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ABSTRACT

The main observational characteristics of narrowband

dm-spikes are summarized. Since the spikes are observed in

typical sequences of radio bursts, a global model of these

bursts is presented. The intensity of the magnetic field in

the spike source region, which is of principal importance,
is discussed.

I. INTRODUCTION

Observations indicate that dm-spikes can be divided into

two groups: narrowband dm-spikes (bandwidth af _ 3-15 l_.Hz,

duration ts % 0.1 s) and broadband spikes (blips)(15 I_[Hz _ af

100 MHz, t_ _ I s). Whereas the broadband spikes belong to

the impulsive phase of the flare and are similar to type II!

radio bursts (Benz et al.1983,Wiehl et al.!985,F_rnXk et al.

1985), the narrowband dm-spikes were observed during the

early stage of flare mass ejection (Karlick_ 1984). Due to

their very high brightness temperature (Kuijpers et a1.1981 )

the narrowband din-spikes belong to the most interesting and

important radio bursts. The purpose of this paper is to study

these narrowband dm-spikes from the point of view of the flare

process as a whole.

2. THE OBSERVATIONAL CHARACTERISTICS OF NARROWBAND D_-SPIKES

a) The duration of a separate spike is _ 0.1 s.
b) The bandwidth _f = 3 - 15 IvIHz.

c) The radio flux of a spike is typically 200 sfu (Kaastra
1985 ).

d) The dimension of the spike source of 500-6000 km and the

brightness temperature of the spike of 1.4xI0 _2 -6xI0 _s K

are estimated (Kuijpers et al.1981,Kaastra 1985).

e) In the radio spectrum, the spikes are observed in groups

which sometimes consist of several hundreds of spikes.

f) Relationships between the dm-spikes and zebra pattern

(Kaastra 1985) and the din-spikes and brained zebra pattern

(Kuijpers et al. 1981) were found.
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g) Oscillations of a spike band were observed (Kaastra 1985).

h) Sequences of radio bursts were observed in several cases

(dm-spikes, dm-pulsations and type II radio bursts)

(Karlick_ 1984). The pattern of such a sequence from the

January 31,1982 flare is depicted in Figure I. The impul-

sive phase of the flare usually precedes this sequence by

several minutes. The dm-spikes are observed at higher

frequencies than the pulsations and type II radio bursts.

i) In the August 19,1981 flare, we observed an interesting

radio spectrum (Figure 2a) which expresses the relation-

ship between the narrowband din-spikes, pulsations and fiber
(intermediate drift) bursts (Karlick_ 1985). In this parti-

cular case, it is important that the sequence of radio

bursts mentioned is followed (at lower frequencies) by a

type II radio burst. This sequence, with the exception of

the U-type and fiber bursts, is thus similar to the pattern

in Figure I.

j) The dm-spikes are considered to be the fine structure of

type IV radio bursts (Slottje 1981). In some cases, a group

of spikes were observed to change gradually into continuum

radiation (type IV radio burst) in the spectrum - see

Figure 2 in the paper by Karlick_ (1984).

k) The polarization of spikes may take any value and it is

almost constant within a single group, both in time and at

different frequencies. Their polarization is usually the

same as that of near radio activity (e.g. pulsations)
(Nonino et al. 1985).

l) The narrowband din-spikes are usually related to two-ribbon

flares (Karlick_ 1984).

3. blODEL OF BURST SEQUENCES WITH NARROWBAND DM-SPIKES

The observed burst sequences are best for verifying

models of separate bursts, because these models must consti-

tute the global model. Moreover, in this particular case the

global model must agree with the model of the two-ribbon

flare. Furthermore, the relation between narrowband dm-spikes

and type II radio bursts indicates that the observed burst

sequenes are connected with the process of flare mass ejection
(Karlick_ 1984).

The first attempt to explain the burst sequence was made

by Karlick_ (1985). The radio spectrum and the corresponding

model is shown in Figure 2. In this model, the narrowband

dm-spikes are interpreted as a radio manifestation of the

spatially localized reconnections in the flare loop. The

individual reconnection accelerates the dense electron beam,

which cannot be stabilized by non-linear processes, and,

consequently, the beam relaxes quasilinearly in a very short
time. During this process, Langmuir s waves are generated
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Fig.1. Pattern of typical radio burst sequence

(narrowband dm-spikes, pulsations and type

II radio burst) observed during the

January 31, 1982 flare•
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Fig.2a. A part of the radio spectrum of the

August 19, 1981 flare.
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Fig.2b. The model corresponding to the radio

spectrum in Figure 2a.
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which, after transformation, lead to dm-spikes. The duration

of a din-spike is thought to be related to the thermal damping

time of the generated Langmuir s waves. After quasilinear rela-

xation and space evolution, the superthermal electrons form

the new electron beams which propagate along the flare loop

and generate U-type bursts via two-stream instability. After

some time, the superthermal electrons become trapped in the

flare loop, and fiber bursts (the model by Kuijpers 1975)
and pulsations (the model by Benz and Kuijpers 19761 are

generated via the loss-cone instability. The same "periods"
of the fiber bursts and pulsations (sudden reductions) are

explained by the superthermal electrons which, after inter-

acting with whistlers (fiber bursts) in the bottom part of

the flare loop, interrupt the loss-cone instability (sudden

reductions) also in the upper part of the flare loop. In the

course of the whole process, the flare loop is heated and it,

therefore, expands and generates a shock wave (type II radio

burst). The parameters of the flare loop in the radio burst

sources were estimated on the basis of this concept and of

the models of the individual bursts mentioned (Figure 2b):

The height of the flare loop from the U-type burst theory,

the magnetic fields from the fiber and type II burst theory,

the mean electric field in the reconnection process from the

size of the spike source region and the energy of the super-
thermal electrons.

This model was developed for the August 19,1981 flare,

but its significance is more general. It can also explain the

typical burst sequence shown in Figure I. The role of the

spikes, pulsations and type II bursts remains the same, and

the U-type and fiber bursts are not observed due to some

effects (generation mechanism, propagation effects, weak

intensity).

4. DISCUSSION

In all dm-spike models, their principal condition is

expressed in terms of the ratio of the electron plasma wp_

and electron cyclotron Wce frequencies. For example, the

models by Kui_pers et al.(1981)(the runaway model) and by

Melrose and Dulk (1982)(the electron-cyclotron maser) require

relatively high magnetic fields, i.e. the condition w_e _wce
must be satisfied. On the other hand, Kaastra (1985) esta-

blished the condition _p_>> _¢e in the spike source region on

the basis of the relation between the dm-spikes and the

zebra pattern. A similar result can also be obtained in our

case with a relatively low magnetic field (Figure 2b).

(However, a strong local concentration of the magnetic field

can change this result).

In general, it is difficult to estimate the magnetic
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field in the spike source region. In our case, we have used
Kuijper's theory of fiber bursts (Kuijpers 1975). However,

one thing requires an explanation: The H-alpha ribbons of the

August 19,1981 flare were squeezed among a group of sunspots

with a relatively high magnetic field. But Kuijper's fiber

burst theory cannot yield magnetic fields much higher than

we estimated. (A higher magnetic field means a higher group

velocity of the whistlers and a larger distance over which

the whistlers must propagate during the time of the fiber

burst. However, this distance must be smaller than the

characteristic dimension of the flare). These contradictory

facts can be explained in two wa_s:
a) By the structure of the flare s magnetic field.

The magnetic field in the flare is strongly inhomogeneous,

in other words, besides regions with strong magnetic fields

there are also regions with weak magnetic fields.
b) By modifying fiber burst theory.

For example, if the whistlers are replaced by another
type of low-frequency wave or if the ratio of whistler

frequency and electron gyrofrequency is smaller than 0.25

(which is usually used), the estimated magnetic field may

come out higher.

The situation is evidently very complicated. It should

be emphasized, therefore, that the results reported above

were obtained using determined models which still require
verification.
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